Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
2.
Respir Physiol Neurobiol ; 325: 104256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583744

ABSTRACT

We investigated whether central or peripheral limitations to oxygen uptake elicit different respiratory sensations and whether dyspnea on exertion (DOE) provokes unpleasantness and negative emotions in patients with heart failure with preserved ejection fraction (HFpEF). 48 patients were categorized based on their cardiac output (Q̇c)/oxygen uptake (V̇O2) slope and stroke volume (SV) reserve during an incremental cycling test. 15 were classified as centrally limited and 33 were classified as peripherally limited. Ratings of perceived breathlessness (RPB) and unpleasantness (RPU) were assessed (Borg 0-10 scale) during a 20 W cycling test. 15 respiratory sensations statements (1-10 scale) and 5 negative emotions statements (1-10) were subsequently rated. RPB (Central: 3.5±2.0 vs. Peripheral: 3.4±2.0, p=0.86), respiratory sensations, or negative emotions were not different between groups (p>0.05). RPB correlated (p<0.05) with RPU (r=0.925), "anxious" (r=0.610), and "afraid" (r=0.383). While DOE provokes elevated levels of negative emotions, DOE and respiratory sensations seem more related to a common mechanism rather than central and/or peripheral limitations in HFpEF.


Subject(s)
Dyspnea , Heart Failure , Stroke Volume , Humans , Heart Failure/physiopathology , Male , Female , Aged , Dyspnea/physiopathology , Middle Aged , Stroke Volume/physiology , Perception/physiology , Exercise/physiology , Exercise Test , Oxygen Consumption/physiology , Emotions/physiology
3.
Hypertension ; 81(4): 917-926, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385250

ABSTRACT

BACKGROUND: We tested the hypothesis that patients with heart failure with preserved ejection fraction (HFpEF) would have greater muscle sympathetic nerve activity (MSNA) at rest and sympathetic reactivity during a cold pressor test compared with non-heart failure controls. Further, given the importance of the baroreflex modulation of MSNA in the control of blood pressure (BP), we hypothesized that patients with HFpEF would exhibit a reduced sympathetic baroreflex sensitivity. METHODS: Twenty-eight patients with HFpEF and 44 matched controls (mean±SD: 71±8 versus 70±7 years; 9 men/19 women versus 16 men/28 women) were studied. BP, heart rate, and MSNA (microneurography) were measured during 6 to 10 minutes of supine rest and the 2-minute cold pressor test. Spontaneous sympathetic baroreflex sensitivity was assessed during supine rest. RESULTS: Patients with HFpEF had higher resting MSNA burst frequency (39±14 versus 31±12 bursts/min; P=0.020) and lower sympathetic baroreflex sensitivity (-2.83±0.76 versus -3.57±1.19 bursts/100 heartbeats/mm Hg; P=0.019) than controls, but burst incidence was not different between groups (56±19 versus 50±20 bursts/100 heartbeats; P=0.179). During the cold pressor test, increases in MSNA indices did not differ between groups (P=0.135-0.998), but patients had a smaller increase in diastolic BP (Δ4±6 versus Δ14±11 mm Hg; P<0.001) compared with controls. CONCLUSIONS: Despite augmented resting MSNA burst frequency, burst incidence was not significantly different between groups, and sympathetic baroreflex sensitivity was reduced in patients with HFpEF. Furthermore, patients had preserved sympathetic reactivity but attenuated diastolic BP responses during the cold pressor test. These data suggest that, during physiological stress, sympathetic reactivity is intact, but the peripheral pathway for sympathetic vasoconstriction may be impaired in HFpEF.


Subject(s)
Heart Failure , Male , Humans , Female , Heart Failure/diagnosis , Stroke Volume , Baroreflex/physiology , Blood Pressure/physiology , Sympathetic Nervous System , Heart Rate/physiology , Muscle, Skeletal/physiology
5.
J Appl Physiol (1985) ; 136(1): 141-150, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38031720

ABSTRACT

Posttraumatic stress disorder (PTSD) is associated with an increased risk of developing cardiovascular disease, especially in women. Evidence indicates that men with PTSD exhibit lower maximal oxygen uptake (V̇o2max) relative to controls; however, whether V̇o2max is blunted in women with PTSD remains unknown. Furthermore, it is unclear what determinants (i.e., central and/or peripheral) of V̇o2max are impacted by PTSD. Therefore, we evaluated the central (i.e., cardiac output; Q̇c) and peripheral (i.e., arteriovenous oxygen difference) determinants of V̇o2max in women with PTSD; hypothesizing that V̇o2max would be lower in women with PTSD compared with women without PTSD (controls), primarily due to smaller increases in stroke volume (SV), and therefore Q̇c. Oxygen uptake (V̇o2), heart rate (HR), Q̇c, SV, and arteriovenous oxygen difference were measured in women with PTSD (n = 14; mean [SD]: 43 [11] yr,) and controls (n = 17; 45 [11] yr) at rest, and during an incremental maximal treadmill exercise test, and the Q̇c/V̇o2 slope was calculated. V̇o2max was not different between women with and without PTSD (24.3 [5.6] vs. 26.4 [5.0] mL/kg/min; P = 0.265). However, women with PTSD had higher Q̇c [P = 0.002; primarily due to greater SV (P = 0.069), not HR (P = 0.285)], and lower arteriovenous oxygen difference (P = 0.002) throughout exercise compared with controls. Furthermore, the Q̇c/V̇o2 slope was steeper in women with PTSD relative to controls (6.6 [1.4] vs. 5.7 [1.0] AU; P = 0.033). Following maximal exercise, women with PTSD exhibited slower HR recovery than controls (P = 0.046). Thus, despite attenuated peripheral oxygen extraction, V̇o2max is not reduced in women with PTSD, likely due to larger increases in Q̇c.NEW & NOTEWORTHY The current study indicates that V̇o2max is not different between women with and without PTSD; however, women with PTSD exhibit blunted peripheral extraction of oxygen, thus requiring an increase in Q̇c to meet metabolic demand during exercise. Furthermore, following exercise, women with PTSD demonstrate impaired autonomic cardiovascular control relative to sedentary controls. We interpret these data to indicate that women with PTSD demonstrate aberrant cardiovascular responses during and immediately following fatiguing exercise.


Subject(s)
Stress Disorders, Post-Traumatic , Male , Humans , Female , Oxygen Consumption/physiology , Cardiac Output/physiology , Stroke Volume/physiology , Heart Rate/physiology , Exercise Test , Oxygen/metabolism
6.
Circulation ; 148(25): 2008-2016, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37830218

ABSTRACT

BACKGROUND: Despite advances in medical and cardiac resynchronization therapy (CRT), individuals with chronic congestive heart failure (CHF) have persistent symptoms, including exercise intolerance. Optimizing cardio-locomotor coupling may increase stroke volume and skeletal muscle perfusion as previously shown in healthy runners. Therefore, we tested the hypothesis that exercise stroke volume and cardiac output would be higher during fixed-paced walking when steps were synchronized with the diastolic compared with systolic portion of the cardiac cycle in patients with CHF and CRT. METHODS: Ten participants (58±17 years of age; 40% female) with CHF and previously implanted CRT pacemakers completed 5-minute bouts of walking on a treadmill (range, 1.5-3 mph). Participants were randomly assigned to first walking to an auditory tone to synchronize their foot strike to either the systolic (0% or 100±15% of the R-R interval) or diastolic phase (45±15% of the R-R interval) of their cardiac cycle and underwent assessments of oxygen uptake (V̇o2; indirect calorimetry) and cardiac output (acetylene rebreathing). Data were compared through paired-samples t tests. RESULTS: V̇o2 was similar between conditions (diastolic 1.02±0.44 versus systolic 1.05±0.42 L/min; P=0.299). Compared with systolic walking, stroke volume (diastolic 80±28 versus systolic 74±26 mL; P=0.003) and cardiac output (8.3±3.5 versus 7.9±3.4 L/min; P=0.004) were higher during diastolic walking; heart rate (paced) was not different between conditions. Mean arterial pressure was significantly lower during diastolic walking (85±12 versus 98±20 mm Hg; P=0.007). CONCLUSIONS: In patients with CHF who have received CRT, diastolic stepping increases stroke volume and oxygen delivery and decreases afterload. We speculate that, if added to pacemakers, this cardio-locomotor coupling technology may maximize CRT efficiency and increase exercise participation and quality of life in patients with CHF.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Female , Male , Pilot Projects , Quality of Life , Heart Failure/therapy , Hemodynamics/physiology , Stroke Volume/physiology , Oxygen
7.
J Am Heart Assoc ; 12(20): e031399, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37830338

ABSTRACT

Background Moderate intensity exercise training (MIT) is safe and effective for patients with hypertrophic cardiomyopathy, yet the efficacy of high intensity training (HIT) remains unknown. This study aimed to compare the efficacy of HIT compared with MIT in patients with hypertrophic cardiomyopathy. Methods and Results Patients with hypertrophic cardiomyopathy were randomized to either 5 months of MIT, or 1 month of MIT followed by 4 months of progressive HIT. Peak oxygen uptake (V˙O2; Douglas bags), cardiac output (acetylene rebreathing), and arteriovenous oxygen difference (Fick equation) were measured before and after training. Left ventricular outflow gradient and volumes were measured by echocardiography. Fifteen patients completed training (MIT, n=8, age 52±7 years; HIT, n=7, age 42±8 years). Both HIT and MIT improved peak V˙O2 by 1.3 mL/kg per min (P=0.009). HIT (+1.5 mL/kg per min) had a slightly greater effect than MIT (+1.1 mL/kg per min) but with no statistical difference (group×exercise P=0.628). A greater augmentation of arteriovenous oxygen difference occurred with exercise (Δ1.6 mL/100 mL P=0.005). HIT increased left ventricular end-diastolic volume (+17 mL, group×exercise P=0.015) compared with MIT. No serious arrhythmias or adverse cardiac events occurred. Conclusions This randomized trial of exercise training in patients with hypertrophic cardiomyopathy demonstrated that both HIT and MIT improved fitness without clear superiority of either. Although the study was underpowered for safety outcomes, no serious adverse events occurred. Exercise training resulted in salutary peripheral and cardiac adaptations. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03335332.


Subject(s)
Cardiomyopathy, Hypertrophic , Cardiovascular System , Humans , Middle Aged , Adult , Exercise , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/therapy , Heart , Oxygen
9.
Respir Physiol Neurobiol ; 318: 104167, 2023 12.
Article in English | MEDLINE | ID: mdl-37758032

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) patients have an increased ventilatory demand. Whether their ventilatory capacity can meet this increased demand is unknown, especially in those with obesity. Body composition (DXA) and pulmonary function were measured in 20 patients with HFpEF (69 ± 6 yr;9 M/11 W). Cardiorespiratory responses, breathing mechanics, and ratings of perceived breathlessness (RPB, 0-10) were measured at rest, 20 W, and peak exercise. FVC correlated with %body fat (R2 =0.51,P = 0.0006), V̇O2peak (%predicted,R2 =0.32,P = 0.001), and RPB (R2 =0.58,P = 0.0004). %Body fat correlated with end-expiratory lung volume at rest (R2 =0.76,P < 0.001), 20 W (R2 =0.72,P < 0.001), and peak exercise (R2 =0.74,P < 0.001). Patients were then divided into two groups: those with lower ventilatory reserve (FVC<3 L,2 M/10 W) and those with higher ventilatory reserve (FVC>3.8 L,7 M/1 W). V̇O2peak was ∼22% less (p < 0.05) and RPB was twice as high at 20 W (p < 0.01) in patients with lower ventilatory reserve. Ventilatory reserves are limited in patients with HFpEF and obesity; indeed, the margin between ventilatory demand and capacity is so narrow that exercise capacity could be ventilatory limited in many patients.


Subject(s)
Heart Failure , Humans , Stroke Volume , Lung , Dyspnea , Exercise Test , Exercise Tolerance , Obesity
11.
Obesity (Silver Spring) ; 31(7): 1884-1893, 2023 07.
Article in English | MEDLINE | ID: mdl-37368514

ABSTRACT

OBJECTIVE: The aim of this retrospective study was to determine whether regional epicardial adipose tissue (EAT) exerts localized effects on adjacent myocardial left ventricular (LV) function. METHODS: Cardiac magnetic resonance imaging (MRI), echocardiography, dual-energy x-ray absorptiometry, and exercise testing were performed in 71 patients with obesity with elevated cardiac biomarkers and visceral fat. Total and regional (anterior, inferior, lateral, right ventricular) EAT was quantified by MRI. Diastolic function was quantified by echocardiography. MRI was used to quantify regional longitudinal LV strain. RESULTS: EAT was associated with visceral adiposity (r = 0.47, p < 0.0001) but not total fat mass. Total EAT was associated with markers of diastolic function (early tissue Doppler relaxation velocity [e'], mitral inflow velocity ratio [E/A], early mitral inflow/e' ratio [E/e']), but only E/A remained significant after adjustment for visceral adiposity (r = -0.30, p = 0.015). Right ventricular and LV EAT had similar associations with diastolic function. There was no evidence for localized effects of regional EAT deposition on adjacent regional longitudinal strain. CONCLUSIONS: There was no association between regional EAT deposition and corresponding regional LV segment function. Furthermore, the association between total EAT and diastolic function was attenuated after adjustment for visceral fat, indicating that systemic metabolic impairments contribute to diastolic dysfunction in high-risk middle-aged adults.


Subject(s)
Pericardium , Ventricular Dysfunction, Left , Adult , Middle Aged , Humans , Retrospective Studies , Pericardium/diagnostic imaging , Adipose Tissue , Ventricular Function, Left , Diastole , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/pathology
12.
Chest ; 164(3): 686-699, 2023 09.
Article in English | MEDLINE | ID: mdl-37030529

ABSTRACT

BACKGROUND: The primary cause of dyspnea on exertion in heart failure with preserved ejection fraction (HFpEF) is presumed to be the marked rise in pulmonary capillary wedge pressure during exercise; however, this hypothesis has never been tested directly. Therefore, we evaluated invasive exercise hemodynamics and dyspnea on exertion in patients with HFpEF before and after acute nitroglycerin (NTG) treatment to lower pulmonary capillary wedge pressure. RESEARCH QUESTION: Does reducing pulmonary capillary wedge pressure during exercise with NTG improve dyspnea on exertion in HFpEF? STUDY DESIGN AND METHODS: Thirty patients with HFpEF performed two invasive 6-min constant-load cycling tests (20 W): one with placebo (PLC) and one with NTG. Ratings of perceived breathlessness (0-10 scale), pulmonary capillary wedge pressure (right side of heart catheter), and arterial blood gases (radial artery catheter) were measured. Measurements of V˙/Q˙ matching, including alveolar dead space (Vdalv; Enghoff modification of the Bohr equation) and the alveolar-arterial Po2 difference (A-aDO2; alveolar gas equation), were also derived. The ventilation (V˙e)/CO2 elimination (V˙co2) slope was also calculated as the slope of the V˙e and V˙co2 relationship, which reflects ventilatory efficiency. RESULTS: Ratings of perceived breathlessness increased (PLC: 3.43 ± 1.94 vs NTG: 4.03 ± 2.18; P = .009) despite a clear decrease in pulmonary capillary wedge pressure at 20 W (PLC: 19.7 ± 8.2 vs NTG: 15.9 ± 7.4 mm Hg; P < .001). Moreover, Vdalv (PLC: 0.28 ± 0.07 vs NTG: 0.31 ± 0.08 L/breath; P = .01), A-aDO2 (PLC: 19.6 ± 6.7 vs NTG: 21.1 ± 6.7; P = .04), and V˙e/V˙co2 slope (PLC: 37.6 ± 5.7 vs NTG: 40.2 ± 6.5; P < .001) all increased at 20 W after a decrease in pulmonary capillary wedge pressure. INTERPRETATION: These findings have important clinical implications and indicate that lowering pulmonary capillary wedge pressure does not decrease dyspnea on exertion in patients with HFpEF; rather, lowering pulmonary capillary wedge pressure exacerbates dyspnea on exertion, increases V˙/Q˙ mismatch, and worsens ventilatory efficiency during exercise in these patients. This study provides compelling evidence that high pulmonary capillary wedge pressure is likely a secondary phenomenon rather than a primary cause of dyspnea on exertion in patients with HFpEF, and a new therapeutic paradigm is needed to improve symptoms of dyspnea on exertion in these patients.


Subject(s)
Heart Failure , Humans , Pulmonary Wedge Pressure , Stroke Volume , Heart Failure/complications , Heart Failure/diagnosis , Dyspnea/etiology , Lung , Exercise Tolerance , Exercise Test/adverse effects
13.
JACC Heart Fail ; 11(7): 760-771, 2023 07.
Article in English | MEDLINE | ID: mdl-37086245

ABSTRACT

BACKGROUND: Impaired ventricular relaxation influences left ventricular pressures during exercise in heart failure with preserved ejection fraction (HFpEF). Sarco/endoplasmic reticulum calcium-adenosine triphosphatase (SERCA2a) facilitates myocardial relaxation by increasing calcium reuptake and is impaired in HFpEF. OBJECTIVES: This study sought to investigate the effects of istaroxime, a SERCA2 agonist, on lusitropic and hemodynamic function during exercise in patients with HFpEF and control subjects. METHODS: Eleven control subjects (7 male, 4 female) and 15 patients with HFpEF (8 male, 7 female) performed upright cycle exercise with right-sided heart catheterization. Participants received istaroxime (0.5 µg/kg/min) or saline placebo (single-blind, crossover design). Cardiac output, pulmonary capillary wedge pressure (PCWP), and diastolic function were measured at rest and during submaximal exercise. In an exploratory analysis (Hedge's g), 7 patients with HFpEF received higher-dose istaroxime (1.0 µg/kg/min). End-systolic elastance (Ees) was calculated by dividing systolic blood pressure (SBP) × 0.9 by end-systolic volume (ESV) (on 3-dimensional echocardiography). RESULTS: Patients with HFpEF had higher PCWP (25 ± 10 mm Hg vs 12 ± 5 mm Hg; P < 0.001) and lower tissue Doppler velocities during exercise. Istaroxime (0.5 µg/kg/min) had no effect on resting or exercise measures in patients with HFpEF or control subjects. Control subjects had a larger increase in Ees (Δ 1.55 ± 0.99 mm Hg/mL vs Δ 0.86 ± 1.31 mm Hg/mL; P = 0.03), driven by lower ESV. Comparing placebo and istaroxime 1.0 µg/kg/min during exercise, PCWP during the 1.0 µg/kg/min istaroxime dose was slightly lower (Δ 2.2 mm Hg; Hedge's g = 0.30). There were no effects on diastolic function, but there were increases in SBP and s', suggesting a mild inotropic effect. CONCLUSIONS: Low-dose istaroxime had no effect on cardiac filling pressure or parameters of relaxation in patients with HFpEF during exercise. Higher doses of istaroxime may have been more effective in reducing exercise PCWP in patients with HFpEF. (Hemodynamic Response to Exercise in HFpEF Patients After Upregulation of SERCA2a; NCT02772068).


Subject(s)
Heart Failure , Humans , Male , Female , Stroke Volume/physiology , Calcium , Single-Blind Method , Heart , Cardiac Catheterization , Ventricular Function, Left/physiology
14.
J Appl Physiol (1985) ; 134(2): 405-414, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36633867

ABSTRACT

Aerobic exercise is important in the rehabilitation of individuals with prior burn injuries, but no studies have examined whether adult burn survivors demonstrate cardiac remodeling to long-term aerobic exercise training. In this study, we tested the hypothesis that 6 months of progressive exercise training improves cardiac magnetic resonance imaging-based measures of cardiac structure and function in well-healed burn survivors. Secondary analyses explored relations between burn surface area and changes in cardiac structure in the cohort of burn survivors. V̇o2peak assessments and cardiac magnetic resonance imaging were performed at baseline and following 6 months of progressive exercise training from 19 well-healed burn survivors and 10 nonburned control participants. V̇o2peak increased following 6 months of training in both groups (Control: Δ5.5 ± 5.8 mL/kg/min; Burn Survivors: Δ3.2 ± 3.6 mL/kg/min, main effect of training, P < 0.001). Left ventricle (LV) mass (Control: Δ1.7 ± 3.1 g/m2; Burn survivors: Δ1.8 ± 2.7 g/m2), stroke volume (Control: Δ5.8 ± 5.2 mL/m2; Burn Survivors: Δ2.8 ± 4.2 mL/m2), and ejection fraction (Control: Δ2.4 ± 4.0%; Burn Survivors: Δ2.2 ± 4.3%) similarly increased following 6 months of exercise training in both cohorts (main effect of training P < 0.05 for all indexes). LV end-diastolic volume increased in the control group (Δ6.5 ± 4.5 mL/m2) but not in the cohort of burn survivors (Δ1.9 ± 2.7 mL/m2, interaction, P = 0.040). Multiple linear regression analyses revealed that burn surface area had little to no effect on changes in ventricular mass or end-diastolic volumes in response to exercise training. Our findings provide initial evidence of physiological cardiac remodeling, which is not impacted by burn size, in response to exercise training in individuals with well-healed burn injuries.NEW & NOTEWORTHY Aerobic exercise is important in the rehabilitation of individuals with prior burn injuries, but no studies have examined whether adult burn survivors demonstrate cardiac remodeling to long-term aerobic exercise training. In this study, we tested the hypothesis that 6 months of progressive exercise training would improve cardiac magnetic resonance imaging-based measures of cardiac structure and function in well-healed burn survivors. Our findings highlight the ability of exercise training to modify cardiac structure and function in well-healed burn survivors and nonburned sedentary controls alike.


Subject(s)
Burns , Ventricular Remodeling , Adult , Humans , Ventricular Remodeling/physiology , Exercise , Stroke Volume , Survivors , Ventricular Function, Left/physiology , Exercise Therapy
15.
Am J Cardiol ; 190: 17-24, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36543076

ABSTRACT

Decreased exercise capacity portends a poor prognosis in heart failure with preserved ejection fraction (HFpEF). The hemodynamic gain index (HGI) is an integrated marker of hemodynamic reserve measured during exercise stress testing and is associated with survival. The goal of this study was to establish the association of HGI with exercise capacity, serum biomarkers, and echocardiography features in subjects with HFpEF. In 209 subjects with HFpEF enrolled in the RELAX (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Diastolic Heart Failure) trial who underwent cardiopulmonary exercise testing, we calculated the HGI ([peak heart rate [HR] × peak systolic blood pressure [SBP]-[HR at rest × SBP at rest])/(HR at rest × SBP at rest) and tested associations with outcomes of interest. The median (interquartile range) HGI was 0.94 (0.5 to 1.3) beats per min/mm Hg. In multivariable-adjusted linear regression, higher HGI was associated with greater peak oxygen consumption (VO2), VO2 at anaerobic threshold, peak minute ventilation, and 6-minute walk distance (all p <0.001). Higher HGI was associated with lower serum high-sensitivity troponin I, pro-collagen III, N-terminal pro-B-type natriuretic peptide, and creatinine (all p <0.05) and with longer deceleration time, lower E/A ratio, and lower left atrial volume index by echocardiography (all p <0.05). In conclusion, higher HGI in stable HFpEF was associated with greater exercise capacity, a biomarker profile indicating less myocardial injury and fibrosis and less kidney dysfunction, and with less severe diastolic dysfunction. These results suggest that HGI, an easily calculated metric from routine exercise testing, is a marker of functional capacity and disease severity in HFpEF and may serve as a surrogate for VO2 parameters for use in treadmill testing without gas exchange capability.


Subject(s)
Heart Failure , Humans , Stroke Volume/physiology , Exercise Tolerance/physiology , Echocardiography , Heart Rate , Biomarkers , Exercise Test
16.
Circulation ; 147(5): 378-387, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36524474

ABSTRACT

BACKGROUND: Exercise intolerance is a defining characteristic of heart failure with preserved ejection fraction (HFpEF). A marked rise in pulmonary capillary wedge pressure (PCWP) during exertion is pathognomonic for HFpEF and is thought to be a key cause of exercise intolerance. If true, acutely lowering PCWP should improve exercise capacity. To test this hypothesis, we evaluated peak exercise capacity with and without nitroglycerin to acutely lower PCWP during exercise in patients with HFpEF. METHODS: Thirty patients with HFpEF (70±6 years of age; 63% female) underwent 2 bouts of upright, seated cycle exercise dosed with sublingual nitroglycerin or placebo control every 15 minutes in a single-blind, randomized, crossover design. PCWP (right heart catheterization), oxygen uptake (breath × breath gas exchange), and cardiac output (direct Fick) were assessed at rest, 20 Watts (W), and peak exercise during both placebo and nitroglycerin conditions. RESULTS: PCWP increased from 8±4 to 35±9 mm Hg from rest to peak exercise with placebo. With nitroglycerin, there was a graded decrease in PCWP compared with placebo at rest (-1±2 mm Hg), 20W (-5±5 mm Hg), and peak exercise (-7±6 mm Hg; drug × exercise stage P=0.004). Nitroglycerin did not affect oxygen uptake at rest, 20W, or peak (placebo, 1.34±0.48 versus nitroglycerin, 1.32±0.46 L/min; drug × exercise P=0.984). Compared with placebo, nitroglycerin lowered stroke volume at rest (-8±13 mL) and 20W (-7±11 mL), but not peak exercise (0±10 mL). CONCLUSIONS: Sublingual nitroglycerin lowered PCWP during submaximal and maximal exercise. Despite reduction in PCWP, peak oxygen uptake was not changed. These results suggest that acute reductions in PCWP are insufficient to improve exercise capacity, and further argue that high PCWP during exercise is not by itself a limiting factor for exercise performance in patients with HFpEF. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04068844.


Subject(s)
Heart Failure , Female , Humans , Male , Exercise Test , Exercise Tolerance , Heart Failure/drug therapy , Hemodynamics , Nitroglycerin , Oxygen , Pulmonary Wedge Pressure , Single-Blind Method , Stroke Volume , Cross-Over Studies
17.
J Cardiopulm Rehabil Prev ; 43(1): 61-65, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36223443

ABSTRACT

PURPOSE: The objective of this investigation was to compare the acute hemodynamic responses during single-leg knee extension (SLKE) exercise between female breast cancer (BC) survivors previously treated with anthracycline chemotherapy and age- and sex-matched control (CON) subjects. METHODS: Fourteen BC survivors (age: 61 ± 7 yr; time post-anthracycline therapy: 12 ± 6 yr) and nine CON subjects (age: 59 ± 7 yr) performed SLKE exercise at 25%, 50%, and 75% of peak power output during which heart rate, blood pressure (BP), leg blood flow (Doppler ultrasonography), and vascular conductance (leg blood flow/mean BP) were measured. Quadriceps mass was estimated from thigh volume and skinfold measures. RESULTS: Breast cancer survivors had lower quadriceps mass compared with CON subjects (1803 ± 607 vs 2601 ± 1102 g, P = .04). No difference was found between groups for maximal SLKE power output (28 ± 11 vs 34 ± 17 W, P = .35), heart rate (109 ± 14 vs 103 ± 13 bpm, P = .36), or mean arterial BP (122 ± 18 vs 119 ± 26 mm Hg, P = .33). Rest and submaximal exercise mean arterial BP, leg blood flow (indexed to quadriceps muscle mass), and leg vascular conductance were not significantly different between BC survivors and CON subjects. CONCLUSION: Leg blood flow during submaximal SLKE exercise is preserved in long-term BC survivors previously treated with anthracycline chemotherapy.


Subject(s)
Breast Neoplasms , Cancer Survivors , Humans , Female , Middle Aged , Aged , Leg/blood supply , Leg/physiology , Breast Neoplasms/drug therapy , Anthracyclines/adverse effects , Hemodynamics , Muscle, Skeletal
19.
Prog Cardiovasc Dis ; 74: 45-52, 2022.
Article in English | MEDLINE | ID: mdl-36279949

ABSTRACT

Reduced exercise tolerance and fatigue are hallmark features in both breast cancer (BC) and heart failure with preserved ejection fraction (HFpEF) and are associated with decreased physical function and quality of life. This brief review focuses on the mechanisms of exercise intolerance in women with BC across the survivorship continuum and highlights how these disturbances within the oxygen transport cascade are similar to that of HFpEF patients. Specifically, the role that impaired cardiac, peripheral vascular and skeletal muscle function play in limiting peak oxygen uptake are discussed. We propose that women with BC are at increased risk of developing HFpEF potentially due to the adverse effects of chemotherapy and concurrent adverse lifestyle behaviors on cardiovascular and skeletal muscle function.


Subject(s)
Breast Neoplasms , Heart Failure , Humans , Female , Heart Failure/diagnosis , Heart Failure/therapy , Heart Failure/metabolism , Stroke Volume/physiology , Oxygen/metabolism , Oxygen Consumption/physiology , Breast Neoplasms/therapy , Breast Neoplasms/metabolism , Quality of Life , Exercise Tolerance/physiology , Muscle, Skeletal/metabolism
20.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R581-R588, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36094450

ABSTRACT

Compared with younger adults, passive heating induced increases in cardiac output are attenuated by ∼50% in older adults. This attenuated response may be associated with older individuals' inability to maintain stroke volume through ionotropic mechanisms and/or through altered chronotropic mechanisms. The purpose of this study was to identify the interactive effect of age and hyperthermia on cardiac responsiveness to dobutamine-induced cardiac stimulation. Eleven young (26 ± 4 yr) and 8 older (68 ± 5 yr) participants underwent a normothermic and a hyperthermic (baseline core temperature +1.2°C) trial on the same day. In both thermal conditions, after baseline measurements, intravenous dobutamine was administered for 12 min at 5 µg/kg/min, followed by 12 min at 15 µg/kg/min. Primary measurements included echocardiography-based assessments of cardiac function, gastrointestinal and skin temperatures, heart rate, and mean arterial pressure. Heart rate responses to dobutamine were similar between groups in both thermal conditions (P > 0.05). The peak systolic mitral annular velocity (S'), i.e., an index of left ventricular longitudinal systolic function, was similar between groups for both thermal conditions at baseline. While normothermic, the increase in S' between groups was similar with dobutamine administration. However, while hyperthermic, the increase in S' was attenuated in the older participants with dobutamine (P < 0.001). Healthy, older individuals show attenuated inotropic, but maintained chronotropic responsiveness to dobutamine administration during hyperthermia. These data suggest that older individuals have a reduced capacity to increase cardiomyocyte contractility, estimated by changes in S', via ß1-adrenergic mechanisms while hyperthermic.


Subject(s)
Dobutamine , Hyperthermia, Induced , Adrenergic Agents/pharmacology , Aged , Cardiac Output , Dobutamine/pharmacology , Heart Rate/physiology , Humans , Stroke Volume/physiology , Ventricular Function, Left/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...